

CONSORZIO DI BONIFICA CENTRO

Bacino Saline - Pescara - Alento - Foro

Oggetto:

INTERVENTI PER L'AMMODERNAMENTO DELLE CONDOTTE ADDUTTRICI DELL' IMPIANTO IRRIGUO TAVO - SALINE

- PRIMO LOTTO -

PROGETTO ESECUTIVO

Elaborato:

Numero Elab.

RELAZIONE GEOTECNICA E DI VERIFICA FONDAZIONE

A.11.03

Scala -:-.--

2 3 GIU. 2017 DATA

REV.	DATA	DESCRIZION	۱E
	2 8 GEN. 2021	OS PESCAPA C	

IL RESPONSABILE DEL PROCEDIMENTO

IL PROGETTISTA

IL COORDINATORE DELLA SICUREZZA

Geom. Giovanni Cavaili

Dott. Massimiliano Giardinelli

Ing. Cesare Gard

Visti e/o pareri

Sede legale: Via Gizio n. 36, 66100 Chieti - Tel: 0871.58821 Fax: 0871.560798 - http://www.bonificacentro.it e-mail: cbcentro@bonificacentro.it - PEC: consorziocentro@pec.bonificacentro.it

RELAZIONE GEOTECNICA

Titolo del progetto: INTERVENTI PER L'AMMODERNAMENTO DELLE CONDOTTE ADDUTTRICI DELL'IMPIANTO IRRIGUO TAVO - SALINE

Committente: Consorzio di Bonifica "CENTRO" – Via Gizio, n.36 – 65100 CHIETI

Collecorvino, Moscufo, Cappelle sul Tavo e Montesilvano.

Opera: Pozzetti di diramazione e di linea in cemento armato.

Data:

Comune:

Progettista:
(Ing. Cesare GARQFALO)

Normativa di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996.

- Norme Tecniche per le costruzioni D.M.14/01/2008.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 14 Gennaio 2008

Modello per il calcolo del carico limite

Il terreno di fondazione è considerato costituito da due strati uno superiore ed uno inferiore al piano di posa della fondazione. La presenza della falda è presa in considerazione in base alla sua profondità dal piano campagna. Per la verifica a carico limite si adotta l'approccio 2 con una unica combinazione di carico A1+M1+R3, in cui i coefficienti parziali di sicurezza per le resistenze sono unitari ed il coefficiente di sicurezza globale è 2.3 per il carico limite verticale e 1.1 per il coefficiente di sicurezza a carico orizzontale. L'effetto del sisma è portato in conto considerando che la forza applicata a causa del sisma non è nè centrata nè verticale cio' comporta l'applicazione di fattori correttivi perl'inclinazione e una riduzione delle dimensioni della fondazione in funzione dell'eccentricità. Di seguito si riporta il calcolo per le combinazioni più gravose; in calce è riportato un riepilogo per tutte le combinazioni.

Carico limite

Il calcolo del carico limite è valutato secondo la formula di Terzaghi-Meyerof

$$Q_{\lim} = q \cdot Nq \cdot \zeta q \cdot \xi q \cdot \alpha q \cdot \beta q \cdot \psi q + c \cdot Nc \cdot \zeta c \cdot \xi c \cdot \alpha c \cdot \beta c \cdot \psi c + \gamma \cdot N\gamma \cdot \frac{B}{2} \cdot \zeta \gamma \cdot \xi \gamma \cdot \alpha \gamma \cdot \beta \gamma \cdot \psi \gamma$$

dove:

N₀,N₂,N₂=Coefficienti di Terzaghi - Meyerof per la striscia indefinita

 ζ_q , ζ_c , ζ_γ = coefficienti correttivi di forma funzione del rapporto B/L

 ξ_q , ξ_c , ξ_γ = coefficienti correttivi di inclinazione del carico dipendente da H/V

 $\alpha_{\text{q}},\,\alpha_{\text{c},}\,\alpha_{\gamma}\!\!=\!$ coefficienti correttivi di inclinazione del piano di posa

 β_q , β_c , β_{γ} = coefficienti correttivi di inclinazione del piano campagna

zq,zc,zg= coefficienti sismimici per considerare l'effetto cinematico, considerati solo in presenza di sisma

 ψ_q , ψ_c , ψ_r = coefficienti correttivi di punzonamento dipendenti da un indice di rigidezza del terreno, in particolare detto Ir l'indice di rigidezza del terreno (secondo la teoria di Vesic dipendente dal modulo tangenziale G=0.5 E/(1+v) del terreno, dalla coesione c, dalla tensione effettiva alla profondità B/2 sotto il piano di posa, dall'angolo di attrito del terreno di fondazione) ed Ircrit l'indice di rigidezza critico (dipendente dall' angolo di attrito del terreno e dal rapporto B/L) risulta che i coefficienti di punzonamento sono uguali alla unità quando Ir>=Ircrit, mentre sono minori dell' unità quando Ir<Ircrit.

Oltre a queste correzioni un' altra deriva dalla eccentricità del carico riducendo le dimensioni della fondazione in modo

che il carico risulti centrato rispetto alla fondazione ridotta, dette $'e_b'$ ed $'e_l'$ le eccentrità del carico nella direzione di B ed L il carico limite si calcola per una fondazione di dimensioni ridotte B' =B-2 e_b e L' =L-2 e_l

Altra correzione deriva dalla presenza della falda inserendo i pesi del terreno immerso nel primo e terzo termine, in particolare, detta Hf la profondità della falda e D la profondità del piano di posa,si ha:

per Hf<D si valuta la pressione effettiva sul piano di posa considerando che parte del terreno superiore è immerso, mentre nel terzo termine si userà il peso immerso

per Hf>D ed Hf<D+B il peso del terreno del terzo termine si interpola ta i valori immerso e secco secondo la formula: $\gamma = \gamma' + (\gamma - \gamma') *D/B$

per Hf>D+B la falda è trascurata.

I coefficienti di Terzaghi - Meyerof per la striscia ed i coefficienti correttivi sono dati dalle relazioni:

$$\begin{split} N_q &= \frac{1 + \sin(\varphi)}{1 - \sin(\varphi)} e^{\pi \tan(\phi)} \\ N_c &= (N_q - 1) \cot(\phi) \end{split}$$

Il coefficiente N_{γ} non è suscettibile di una espressione in forma analitica chiusa, ed è stato calcolato per via numerica da diversi Autori. I valori del coefficiente sono riportati nella seguente tabella in funzione dell'angolo ϕ :

ϕ°	0	1	2	3	4	5	6	7	8
N_{γ}	0	0.07	0.15	0.24	0.34	0.45	0.57	0.71	0.86
ϕ°	9	10	11	12	13	14	15	16	17
N_{γ}	1.03	1.22	1.44	1.69	1.97	2.29	2.65	3.06	3.53
ϕ°	18	19	20	21	22	23	24	25	26
N_{γ}	4.07	4.68	5.39	6.2	7.13	8.2	9.44	10.88	12.54
ϕ°	27	28	29	30	31	32	33	34	35
N_{γ}	14.47	16.72	19.34	22.4	25.99	30.22	35.19	41.06	48.03
ϕ°	36	37	38	39	40	41	42	43	44
N_{γ}	56.31	66.19	78.03	92.25	109.41	130.22	155.55	186.54	224.64
ϕ°	45	46	47	48	49	50			
N_{γ}	271.76	330.75	403.67	496.01	613.16	762.89			

$$\begin{split} &\zeta_q = 1 + \frac{B}{L}\tan(\varphi) \\ &\zeta_c = 1 + \frac{B}{L}\frac{N_q}{N_c} \\ &\zeta_r = 1 - 0.4\frac{B}{L} \\ &m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \\ &\xi_q = \left[1 - \frac{H\tan(\phi)}{V\tan(\varphi) + BLc}\right]^m \\ &\xi_c = \xi_q - \frac{1 - \xi_q}{N_c \cdot \tan(\varphi)} \\ &\xi_r = \left[1 - \frac{H\tan(\phi)}{V\tan(\varphi) + BLc}\right]^{m+1} \\ &\xi_q = \exp\left[0.6\frac{B}{L} - 4.4)\tan(\phi) + \frac{3.07\sin(\varphi)\log_{10}(2I_r)}{1 + \sin(\varphi)}\right] \end{split}$$

$$\begin{split} & \psi_c = \psi_q - \frac{1 - \psi_q}{N_q \tan(\varphi)} \sec \varphi \neq 0; \quad \psi_c = 0.32 + 0.12 \frac{B}{L} + 0.6 \log_{10}(I_r) \sec \varphi = 0 \\ & \psi_r = \psi_q \\ & \alpha_q = \alpha_r = (1 - \varepsilon \tan(\varphi))^2 \\ & \alpha_c = \alpha_q - \frac{1 - \alpha_q}{N_c \tan(\varphi)} \\ & \beta_q = (1 - \tan(\varpi))^2 \cos(\varpi) \\ & \beta_c = \beta_\lambda - \frac{q - \beta_\lambda}{N_c \tan(\varphi)} \\ & \beta_c = \beta_\lambda - \frac{q - \beta_\lambda}{N_c \tan(\varphi)} \\ & \varepsilon < \pi/4; \quad \omega < \pi/4; \quad \omega < \varphi \\ & zq = zc = 1 \\ & zg = (1 - kh/\tan(\varphi))^{0.45} \\ & kh = \beta \frac{\alpha_{\max}}{g} \cdot \left(vedi \cdot NT - 7.11.3\right) \end{split}$$

Simbologia carico limite fondazione rettangolare:

В	Base
L	Lunghezza
eb	Eccentricità secondo B
el	Eccentricità secondo L
D	Profondità del piano di posa
3	Inclinazione del piano di posa
ω	Inclinazione del piano campagna
ϕ	Angolo di attrito del terreno di fondazione
c	Coesione del terreno di fondazione
G	Modulo tangenziale del terreno di fondazione
γ_1	Peso specifico terreno superiore
γ	Peso specifico terreno di fondazione
γ _{1Sat}	Peso specifico terreno saturo superiore
γ_{Sat}	Peso specifico terreno saturo di fondazione
Hf	Profondità della falda
W0	Peso specifico acqua
Fv	Componente ortogonale dell'azione sulla fondazione
Fh	Componente tangenziale dell'azione sulla fondazione

Modello terreno coesivo per il calcolo dei cedimenti:

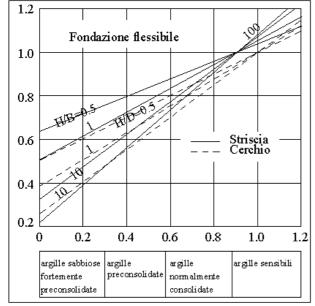
Il terreno è modellato come sequenza di strati di tipo coesivo la cui deformabilità è individuata attraverso il modulo edometrico ovvero in base alla curva edometrica dedotti da prove in sito. Il cedimento è calcolato in base alla teoria di Skempton e Bjerrum. Il cedimento complessivo si compone di un cedimento di consolidazione \mathbf{Wc} e di un cedimento immediato $\mathbf{W0}$.Il cedimento di consolidazione è valutato in funzione del cedimento edometrico secondo la relazione \mathbf{Wc} = $\mathbf{\beta}\mathbf{Wed}$ dove $\mathbf{\beta}$ è fornito dai seguenti diagrammi espressi in funzione del coefficiente A di Skempton, del rapporto H/B per la striscia ovvero di H/D per il quadrato o cerchio, per valori intermedi di interpola linearmente.

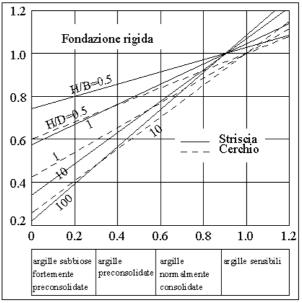
La precedente relazione è applicabile ad uno strato omogeneo di spessore H; nei casi reali di terreno stratificato la precedente non è applicabile, ma assumendo valida l'ipotesi di Steinbrenner possiamo porre il cedimento nella forma:

$$\textit{Wc} = \sum\nolimits_{i=1}^{n} \beta(\textit{A}_{i}, \textit{z}_{i} + \triangle_{i}, \textit{B}, \textit{L}) \textit{Wed}\left(\textit{z}_{i} + \triangle_{i}\right) - \beta(\textit{A}_{i}, \textit{z}_{i}, \textit{B}, \textit{L}) \textit{Wed}\left(\textit{z}_{i}\right)$$

dove:

Ai coefficiente di Skempton dello strato i^{mo}


zi quota superiore dello strato in considerazione


Δi spessore dello strato

Wed(zi) cedimento di uno strato ideale di spessore zi e modulo edometrico Eed_{i-1}

Wed(zi) cedimento di uno strato ideale di spessore zi+∆i e modulo edometrico Eed_i

 β è letto dai diagrammi assumendo come spessore dello strato zi ovvero zi+ $\!\Delta i$

Platea 20-1

Dati della fondazione rettangolare

Falda assente

В	7.70	[m]
L	9.70	[m]
eb	0.12	[m]
el	0.10	[m]
D	3.00	[m]
3	0.00	[°]
ω	0.00	[°]
ϕ	30.00	[°]
c	0.00	[kg/cmq]
G	12.52	[kg/cmq]
γ_1	1.88	[t/mc]
γ	2.05	[t/mc]
Fv	276035	[kg]
Fh	323	[kg]

Carico limite

N_q	N_c	N_{γ}
18.401	30.140	22.400
$\alpha_{ m q}$	$\alpha_{ m c}$	α_{γ}
1.000	1.000	1.000
β_{q}	$\beta_{\rm c}$	β_{γ}
1.000	1.000	1.000
$\xi_{ m q}$	ξ_{c}	ξγ
0.998	0.998	0.997
ψ_{q}	ψ_{c}	ψ_{γ}
0.487	0.439	0.487
$\zeta_{ m q}$	$\zeta_{ m c}$	ζγ
1.454	1.480	0.686
zq	zc	zg
1.000	1.000	1.000
N' _q	N'c	N' _{\gamma}
13.006	19.534	7.458

```
Indice di rigidezza critico Ir_{crit} = 82.269
Indice di rigidezza
                     Ir = 16.307
V = 276035 [kg]
H = 323 [kg]
eb = 0.12 [m]
el = 0.10 [m]
Qlim = 13.006*0.56[kg/cmq] + 7.458*2.05[t/mc]*7.47[m]/2 = 13.04[kg/cmq]
Qd = 5.67 [kg/cmq]
\eta_{vd} = 2.300
Hlim = 159369 [kg]
Hd = 144881 [kg]
\eta_{hd}=1.100
V=276035 [kg] <= Vd=4024039 [kg]
                                                  VERIFICATO
H=323 [kg] <= Hd=144881 [kg]
                                         VERIFICATO
```

La fondazione è considerata infinitamente <u>rigida</u> rispetto al terreno.Il volume di terreno influenzato dalla costruzione è tale che il substrato rigido non influenza il comportamento della fondazione, pertanto l'ultimo strato viene esteso fino alla profondità per la quale sono significativi gli incrementi di tensione indotti dai carichi

N°	H[m]	A	NC	Eed[kg/cmq]	P-E	γ[t/mc]
1	1.00	0.6	Si	30.00		1.88
2	15.00	0.7	Si	50.00		2.05

 $\begin{array}{lll} \mbox{Profondità fondazione} & \mbox{Df} = 3.00 \ [\mbox{m}] \\ \mbox{Carico netto} & \mbox{q}_{eff} = 0.00 \ [\mbox{kg/cmq}] \\ \mbox{Valore medio di } \beta & \beta = 1.000 \\ \mbox{Cedimento edometrico} & \mbox{Wed} = 0 \ [\mbox{mm}] \\ \mbox{Cedimento immediato} & \mbox{W} = 0 \ [\mbox{mm}] \\ \mbox{Cedimento totale} & \mbox{Wt} = 0 \ [\mbox{mm}] \\ \mbox{Wt} = 0 \ [\mbox{mm}] \\ \mbox{Mt} = 0 \$

Platea 20-(5+6)-IV-2

Dati della fondazione rettangolare

Falda assente

В	7.70	[m]
L	9.70	[m]
eb	0.60	[m]
el	0.26	[m]
D	3.00	[m]
ε	0.00	[°]
ω	0.00	[°]
ϕ	30.00	[°]
c	0.00	[kg/cmq]
G	12.52	[kg/cmq]
γ_1	1.88	[t/mc]
γ	2.05	[t/mc]
Fv	210827	[kg]
Fh	30575	[kg]

Carico limite

N_q	N_c	N_{γ}
18.401	30.140	22.400
α_{q}	$\alpha_{ m c}$	α_{γ}
1.000	1.000	1.000
β_{q}	$\beta_{\rm c}$	βγ
1.000	1.000	1.000
ξq	ξς	ξ_{γ}
0.780	0.767	0.667
ψ_{q}	$\psi_{\rm c}$	ψ_{γ}
0.491	0.443	0.491
ζq	$\zeta_{\rm c}$	ζγ
1.410	1.433	0.716
zq	zc	zg
1.000	1.000	0.942
N' _q	N'c	N' _{\gamma}
9.931	14.681	4.948

Coefficiente sismico Kh (effetto cinematico) = 0.072

Indice di rigidezza critico $Ir_{crit} = 87.333$

Indice di rigidezza Ir = 17.612

V = 210827 [kg]

H = 30575 [kg]

eb = 0.60 [m]

el = 0.26 [m]

Qlim=9.931*0.56[kg/cmq]+4.948*2.05[t/mc]*6.51[m]/2=8.90[kg/cmq]

Qd = 3.87 [kg/cmq]

 $\eta_{vd} = 2.300$

Hlim = 121721 [kg]

Hd = 110656 [kg]

 $\eta_{hd}\!\!=\!\!1.100$

V=210827 [kg] <= Vd=2310133 [kg]

H=30575 [kg] <= Hd=110656 [kg]

VERIFICATO VERIFICATO

La fondazione è considerata infinitamente <u>rigida</u> rispetto al terreno.Il volume di terreno influenzato dalla costruzione è tale che il substrato rigido non influenza il comportamento della fondazione, pertanto l'ultimo strato viene esteso fino alla profondità per la quale sono significativi gli incrementi di tensione indotti dai carichi

N°	H[m]	A	NC	Eed[kg/cmq]	P-E	γ[t/mc]
1	1.00	0.6	Si	30.00		1.88
2	15.00	0.7	Si	50.00		2.05

Profondità fondazione $\mathbf{Df} = 3.00 \text{ [m]}$ Carico netto $\mathbf{q}_{eff} = 0.00 \text{ [kg/cmq]}$

Valore medio di β $\beta = 1.000$ Cedimento edometrico Wed=0[mm]
Cedimento di consolidazione Wc=0[mm]
Cedimento immediato W0=0[mm]
Cedimento totale Wt=0[mm]

Platea 20-(5+6)-VI-1

Dati della fondazione rettangolare

Falda assente

В	7.70	[m]
L	9.70	
eb	0.80	
el	0.34	
D	3.00	[m]
3	0.00	
ω	0.00	[°]
ϕ	30.00	[°]
Ċ	0.00	[kg/cmq]
G		[kg/cmq]
γ_1	1.88	[t/mc]
γ	2.05	[t/mc]
Fv	214385	-
Fh	29786	
		_

Carico limite

N_q	N_c	N_{γ}
18.401	30.140	22.400
$\alpha_{ m q}$	$\alpha_{ m c}$	α_{γ}
1.000	1.000	1.000
$\beta_{ m q}$	$\beta_{\rm c}$	β_{γ}
1.000	1.000	1.000
ξq	بخ	ξ_{γ}
0.788	0.775	0.678
ψ_{q}	ψ_{c}	Ψ_{γ}
0.493	0.445	0.493
ζ _a	ζc	ζ_{γ}
1.391	1.413	0.729
zq	ZC	zg
1.000	1.000	0.942
N' _q	N'c	N' _{\gamma}
9.931	14.696	5.143

Coefficiente sismico Kh (effetto cinematico) = 0.072

Indice di rigidezza critico $Ir_{crit} = 89.584$

Indice di rigidezza Ir = 18.227

V = 214385 [kg]

H = 29786 [kg]

eb = 0.80 [m]

el = 0.34 [m]

Qlim = 9.931*0.56[kg/cmq] + 5.143*2.05[t/mc]*6.10[m]/2 = 8.82[kg/cmq]

Qd = 3.83 [kg/cmq]

 $\eta_{vd} = 2.300$

Hlim = 123775 [kg]

Hd = 112523 [kg]

 $\eta_{hd}\!\!=\!\!1.100$

V=214385 [kg] <= Vd=2109197 [kg]

H=29786 [kg] <= Hd=112523 [kg]

VERIFICATO VERIFICATO

La fondazione è considerata infinitamente <u>rigida</u> rispetto al terreno.Il volume di terreno influenzato dalla costruzione è tale che il substrato rigido non influenza il comportamento della fondazione, pertanto l'ultimo strato viene esteso fino alla profondità per la quale sono significativi gli incrementi di tensione indotti dai carichi

N°	H[m]	A	NC	Eed[kg/cmq]	P-E	γ[t/mc]
1	1.00	0.6	Si	30.00		1.88
2	15.00	0.7	Si	50.00		2.05

 $\begin{array}{lll} \mbox{Profondità fondazione} & \mbox{Df} = 3.00 \ [\mbox{m}] \\ \mbox{Carico netto} & \mbox{q}_{eff} = 0.00 \ [\mbox{kg/cmq}] \\ \mbox{Valore medio di } \beta & \beta = 1.000 \\ \mbox{Cedimento edometrico} & \mbox{Wed=0} \ [\mbox{mm}] \\ \mbox{Cedimento immediato} & \mbox{Wc=0} \ [\mbox{mm}] \\ \mbox{Cedimento totale} & \mbox{Wt=0} \ [\mbox{mm}] \\ \end{array}$

Riepilogo risultati del calcolo

Elm.	Cmb	V [kg]	Vd [kg]	CsV (>2.30)	H [kg]	Hd [kg]	CsH (>1.10)	Qd [kg/cmq	qe [kg/cmq	w [mm]
20	1	276035	4024039	33.53	323	144881	>100	5.67	0.00	0
	2	285659	4026429	32.42	441	149932	>100	5.66	0.00	0
	3	295283	4028656	31.38	558	154983	>100	5.66	0.00	0
	4	285659	4026429	32.42	441	149932	>100	5.66	0.00	0
	(5+6)-I-1	213916	2546594	27.38	26408	112277	4.68	4.40	0.00	0
	(5+6)-I-2	212754	2707183	29.27	27678	111667	4.44	4.43	0.00	0
	(5+6)-I-3	211915	2524279	27.40	28124	111227	4.35	4.20	0.00	0
	(5+6)-I-4	210753	2848034	31.08	26896	110617	4.52	4.42	0.00	0
	(5+6)-II-1	214572	2121977	22.75	29306	112621	4.23	3.86	0.00	0
	(5+6)-II-2	210698	2316281	25.28	30476	110588	3.99	3.87	0.00	0
	(5+6)-II-3	213972	2164380	23.27	30571	112306	4.04	3.72	0.00	0
	(5+6)-II-4	210097	2392730	26.19	29467	110273	4.12	3.89	0.00	0
	(5+6)-III-1	213877	2549084	27.41	26295	112257	4.70	4.40	0.00	0
	(5+6)-III-2	212793	2702927	29.21	27786	111687	4.42	4.42	0.00	0
	(5+6)-III-3	211876	2519736	27.35	28232	111206	4.33	4.20	0.00	0
	(5+6)-III-4	210792	2851396	31.11	26783	110637	4.54	4.42	0.00	0
	(5+6)-IV-1	214442	2122293	22.76	29210	112553	4.24	3.86	0.00	0
	(5+6)-IV-2	210827	2310133	25.20	30575	110656	3.98	3.87	0.00	0
	(5+6)-IV-3	213842	2156629	23.20	30676	112238	4.02	3.71	0.00	0
	(5+6)-IV-4	210227	2395364	26.21	29365	110341	4.13	3.89	0.00	0
	(5+6)-V-1	213292	2544107	27.43	26272	111949	4.69	4.40	0.00	0
	(5+6)-V-2	212130	2742230	29.73	26366	111339	4.65	4.49	0.00	0
	(5+6)-V-3	212539	2564737	27.75	26824	111554	4.57	4.27	0.00	0
	(5+6)-V-4	211377	2853275	31.05	26752	110944	4.56	4.43	0.00	0
	(5+6)-VI-1	214385	2109197	22.63	29786	112523	4.16	3.83	0.00	0
	(5+6)-VI-2	210510	2330376	25.46	29891	110489	4.07	3.90	0.00	0
	(5+6)-VI-3	214159	2180140	23.41	29985	112404	4.12	3.75	0.00	0
	(5+6)-VI-4	210285	2380987	26.04	29942	110371	4.05	3.87	0.00	0
	(5+6)-VII-1	213253	2546533	27.47	26162	111929	4.71	4.41	0.00	0
	(5+6)-VII-2	212169	2737854	29.68	26476	111360	4.63	4.48	0.00	0
	(5+6)-VII-3	212501	2560104	27.71	26934	111534	4.56	4.26	0.00	0
	(5+6)-VII-4	211416	2856556	31.08	26642	110965	4.58	4.43	0.00	0
	(5+6)-VIII-1	214255	2109406	22.64	29695	112455	4.17	3.83	0.00	0
	(5+6)-VIII-2	210640	2324199	25.38	29990	110557	4.06	3.89	0.00	0
	(5+6)-VIII-3	214029	2172373	23.34	30090	112336	4.11	3.74	0.00	0
	(5+6)-VIII-4	210414	2383502	26.05	29845	110439	4.07	3.87	0.00	0
	(7+8)-I-1	213916	2546594	27.38	26408	112277	4.68	4.40	0.00	0
	(7+8)-I-2	212754	2707183	29.27	27678	111667	4.44	4.43	0.00	0

Elm.	Cmb	V [kg]	Vd [kg]	CsV (>2.30)	H [kg]	Hd [kg]	CsH (>1.10)	Qd [kg/cmq	qe [kg/cmq	w [mm]
	(7+8)-I-3	211915	2524279	27.40	28124	111227	4.35	4.20	0.00	0
	(7+8)-I-4	210753	2848034	31.08	26896	110617	4.52	4.42	0.00	0
	(7+8)-II-1	214572	2121977	22.75	29306	112621	4.23	3.86	0.00	0
	(7+8)-II-2	210698	2316281	25.28	30476	110588	3.99	3.87	0.00	0
	(7+8)-II-3	213972	2164380	23.27	30571	112306	4.04	3.72	0.00	0
	(7+8)-II-4	210097	2392730	26.19	29467	110273	4.12	3.89	0.00	0
	(7+8)-III-1	213877	2549084	27.41	26295	112257	4.70	4.40	0.00	0
	(7+8)-III-2	212793	2702927	29.21	27786	111687	4.42	4.42	0.00	0
	(7+8)-III-3	211876	2519736	27.35	28232	111206	4.33	4.20	0.00	0
	(7+8)-III-4	210792	2851396	31.11	26783	110637	4.54	4.42	0.00	0
	(7+8)-IV-1	214442	2122293	22.76	29210	112553	4.24	3.86	0.00	0
	(7+8)-IV-2	210827	2310133	25.20	30575	110656	3.98	3.87	0.00	0
	(7+8)-IV-3	213842	2156629	23.20	30676	112238	4.02	3.71	0.00	0
	(7+8)-IV-4	210227	2395364	26.21	29365	110341	4.13	3.89	0.00	0
	(7+8)-V-1	213292	2544107	27.43	26272	111949	4.69	4.40	0.00	0
	(7+8)-V-2	212130	2742230	29.73	26366	111339	4.65	4.49	0.00	0
	(7+8)-V-3	212539	2564737	27.75	26824	111554	4.57	4.27	0.00	0
	(7+8)-V-4	211377	2853275	31.05	26752	110944	4.56	4.43	0.00	0
	(7+8)-VI-1	214385	2109197	22.63	29786	112523	4.16	3.83	0.00	0
	(7+8)-VI-2	210510	2330376	25.46	29891	110489	4.07	3.90	0.00	0
	(7+8)-VI-3	214159	2180140	23.41	29985	112404	4.12	3.75	0.00	0
	(7+8)-VI-4	210285	2380987	26.04	29942	110371	4.05	3.87	0.00	0
	(7+8)-VII-1	213253	2546533	27.47	26162	111929	4.71	4.41	0.00	0
	(7+8)-VII-2	212169	2737854	29.68	26476	111360	4.63	4.48	0.00	0
	(7+8)-VII-3	212501	2560104	27.71	26934	111534	4.56	4.26	0.00	0
	(7+8)-VII-4	211416	2856556	31.08	26642	110965	4.58	4.43	0.00	0
	(7+8)-VIII-1	214255	2109406	22.64	29695	112455	4.17	3.83	0.00	0
	(7+8)-VIII-2	210640	2324199	25.38	29990	110557	4.06	3.89	0.00	0
	(7+8)-VIII-3	214029	2172373	23.34	30090	112336	4.11	3.74	0.00	0
	(7+8)-VIII-4	210414	2383502	26.05	29845	110439	4.07	3.87	0.00	0
	Minimi coeff.									
	sic.									
20	(5+6)-VI-1			22.63						
20	(5+6)-IV-2						3.98			

Wmax=0,Wmin=0

Verifica a scorrimento globale delle fondazione Comb. = Combinazione di verifica

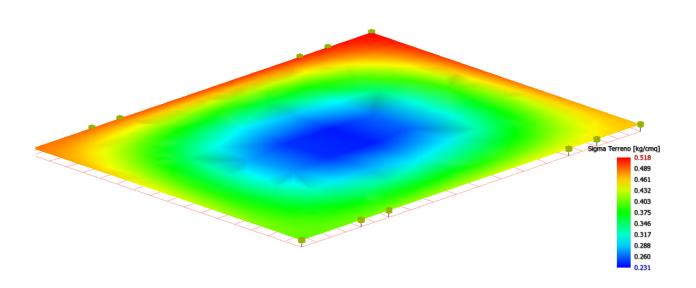
N[kg] = Sforzo normale

Hd[kg] = Azione orizzontale depurata dalle azioni assorbite da pali e plinti su pali

R[kg] = Resistenza allo scorrimento R=Area*c+N*tan(fi)

CS = R/Hd

CSd = Coefficiente di sicurezza di progetto


Area delle strutture di fondazione a contatto con il terreno A=74.6900 m²

Comb.	N	Hd	R	CS.	CSd	ver
	kg	kg	kg			
1	276035	323	159369	493.28	1.10	Si
2	285659	441	164925	374.26	1.10	Si
3	295283	558	170482	305.39	1.10	Si
4	285659	441	164925	374.26	1.10	Si
(5+6)-I-1	213916	26408	123505	4.68	1.10	Si
(5+6)-I-2	212754	27678	122834	4.44	1.10	Si
(5+6)-I-3	211915	28124	122349	4.35	1.10	Si
(5+6)-I-4	210753	26896	121678	4.52	1.10	Si
(5+6)-II-1	214572	29306	123883	4.23	1.10	Si
(5+6)-II-2	210698	30476	121646	3.99	1.10	Si

12

G 1	N	11.1	D	CC	CC 1	
Comb.	N	Hd	R	CS.	CSd	ver
(5+6)-II-3	213972	30571	123537	4.04	1.10	Si
(5+6)-II-4	210097	29467	121300	4.12	1.10	Si
(5+6)-III-1	213877	26295	123482	4.70	1.10	Si
(5+6)-III-2	212793	27786	122856	4.42	1.10	Si
(5+6)-III-3	211876	28232	122327	4.33	1.10	Si
(5+6)-III-4	210792	26783	121701	4.54	1.10	Si
(5+6)-IV-1	214442	29210	123808	4.24	1.10	Si
(5+6)-IV-2	210827	30575	121721	3.98	1.10	Si
(5+6)-IV-3	213842	30676	123462	4.02	1.10	Si
(5+6)-IV-4	210227	29365	121375	4.13	1.10	Si
(5+6)-V-1	213292	26272	123144	4.69	1.10	Si
(5+6)-V-2	212130	26366	122473	4.65	1.10	Si
(5+6)-V-3	212539	26824	122710	4.57	1.10	Si
` '			122039			Si
(5+6)-V-4	211377	26752		4.56	1.10	
(5+6)-VI-1	214385	29786	123775	4.16	1.10	Si
(5+6)-VI-2	210510	29891	121538	4.07	1.10	Si
(5+6)-VI-3	214159	29985	123645	4.12	1.10	Si
(5+6)-VI-4	210285	29942	121408	4.05	1.10	Si
(5+6)-VII-1	213253	26162	123122	4.71	1.10	Si
(5+6)-VII-2	212169	26476	122496	4.63	1.10	Si
(5+6)-VII-3	212501	26934	122687	4.56	1.10	Si
(5+6)-VII-4	211416	26642	122061	4.58	1.10	Si
(5+6)-VIII-1	214255	29695	123700	4.17	1.10	Si
(5+6)-VIII-2	210640	29990	121613	4.06	1.10	Si
(5+6)-VIII-3	214029	30090	123570	4.11	1.10	Si
(5+6)-VIII-4	210414	29845	121483	4.07	1.10	Si
(7+8)-I-1	213916	26408	123505	4.68	1.10	Si
(7+8)-I-2	212754	27678	122834	4.44	1.10	Si
	211915	28124	122349			Si
(7+8)-I-3				4.35	1.10	
(7+8)-I-4	210753	26896	121678	4.52	1.10	Si
(7+8)-II-1	214572	29306	123883	4.23	1.10	Si
(7+8)-II-2	210698	30476	121646	3.99	1.10	Si
(7+8)-II-3	213972	30571	123537	4.04	1.10	Si
(7+8)-II-4	210097	29467	121300	4.12	1.10	Si
(7+8)-III-1	213877	26295	123482	4.70	1.10	Si
(7+8)-III-2	212793	27786	122856	4.42	1.10	Si
(7+8)-III-3	211876	28232	122327	4.33	1.10	Si
(7+8)-III-4	210792	26783	121701	4.54	1.10	Si
(7+8)-IV-1	214442	29210	123808	4.24	1.10	Si
(7+8)-IV-2	210827	30575	121721	3.98	1.10	Si
(7+8)-IV-3	213842	30676	123462	4.02	1.10	Si
(7+8)-IV-4	210227	29365	121375	4.13	1.10	Si
(7+8)-V-1	213292	26272	121373	4.13	1.10	Si
` /						
(7+8)-V-2	212130	26366	122473	4.65	1.10	Si
(7+8)-V-3	212539	26824	122710	4.57	1.10	Si
(7+8)-V-4	211377	26752	122039	4.56	1.10	Si
(7+8)-VI-1	214385	29786	123775	4.16	1.10	Si
(7+8)-VI-2	210510	29891	121538	4.07	1.10	Si
(7+8)-VI-3	214159	29985	123645	4.12	1.10	Si
(7+8)-VI-4	210285	29942	121408	4.05	1.10	Si
(7+8)-VII-1	213253	26162	123122	4.71	1.10	Si
(7+8)-VII-2	212169	26476	122496	4.63	1.10	Si
(7+8)-VII-3	212501	26934	122687	4.56	1.10	Si
(7+8)-VII-4	211416	26642	122061	4.58	1.10	Si
(7+8)-VIII-1	214255	29695	123700	4.17	1.10	Si
(7+8)-VIII-2	210640	29990	121613	4.06	1.10	Si
` /	214029	30090	123570	4.00		Si
(7+8)-VIII-3					1.10	
(7+8)-VIII-4	210414	29845	121483	4.07	1.10	Si

Tipo diagramma: Tensioni medie terreno Combinazione corrente : Scenario Set_NT_SLV_SLD_A2STR/GEO - C 1-l Posizione masse N° 1 Tensioni medie terreno aste Tensioni medie terreno platee

